
COIN AND/OR TOKEN PAY-OUT

TECHNICAL MANUAL

re
v.

 7
-1

0-
02

-1
6

X5 Family
ccTalk protocol/AES

Document reserved according to the law, with reproduction or transmission to third parties is strictly prohibited without the explicit
authorization of the company MICROHARD s.r.l..
Components may be updated and therefore present different details from those depicted below, without this constituting a detriment
due to the texts contained in these instructions.
MICROHARD s.r.l. is not responsible for accidents, breakage, etc. owing to the persons being unaware or not applying the guidelines
contained in these instructions. The same applies to changes and variations and/or use of unauthorized parts.

rev. 7-10-02-16 1

INDEX

1 GENERAL INFORMATION

1.1 DESCRIPTION

1.2 MAIN FEATURES

1.2.1 COIN OUTPUT

1.2.2 ERROR CODE

1.2.3 PCB POSITION

1.2.4 ccTALK STANDARD

1.2.5 CONNECTOR POSITIONS

1.2.6 ANTI-JAM SYSTEM

1.3 SAFETY

1.4 DIMENSIONS

1.5 TECHNICAL DATA

1.6 POWER SUPPLY FOR MOTOR

2 INSTALLATION

3 ELECTRICAL INFORMATION

3.1 GENERAL DESCRIPTION

3.2 POWER SUPPLY

3.3 OPERATING MODES

3.4 OPTICAL SENSORS

3.5 LED INDICATORS

3.6 COIN LEVEL PLATES

4 ELECTRONIC SPECIFICATIONS

5 SPARE PARTS

2 rev. 7-10-02-16

1 GENERAL INFORMATION

1.1 DESCRIPTION

X5 is a new coin and token distributor and can be used in various applications such as payment kiosks, automatic cash
registers, slot machines and money changing and coin recycler machines

1.2 MAIN FEATURES

5 product configurations and operating modes

1.2.1 COIN OUTPUT

By using various accessories provided with X5 you can choose from 5 different coin or token output modes by
diverting the flow from the pre-set position.

1.2.2 ERROR CODE

When the yellow LED on the X5 turns on it means the following: that the device has power; the error code is indicated
by means of a series of different flashes, enabling rapid identification of the causes of the malfunction or counting the
coins paid according to ordinary operation.

1.2.3 PCB POSITION

The PCB enables all the X5 functions -Pay-out can be updated from the outside without have to dismantle the
distributor's parts.

1.2.4 ccTALK STANDARD

For the X5 Pay-out versions the unit functions by using the ccTalk standard. You can choose the device with the
Cinch 12 connector or with the ccTalk standard 10 pins cup connector. The parallel version is available with the cinch
connector only.

1.2.5 CONNECTOR POSITIONS

The connector for ccTalk operation or the 12 pin (Cinch) connector can be set in two different positions:
- side opposite coin output window
- side of coin output window (reverse)

1.2.6 ANTI-JAM SYSTEM

If the motor or belt jams the motor stops and subsequently restarts in reverse; it then stops again and restarts in the
correct direction. If this does not occur the operation will be repeated with 3 tries.

1.3 SAFETY

X5 should not be connected/disconnected from the slide base with the power supply on.
Do not insert hands into the X5 while operating as there are moving mechanical parts.

rev. 7-10-02-16 3

1.4 DIMENSIONS

1.5 TECHNICAL DATA

Distribution speed 4 coins/sec
Coin capacity 1500 pieces of 1.00 •
Weight (empty) 2 kg
Diameter coins dispensed from 16 to 39 mm (from 20 to 31.5 mm with standard chain)
Thickness coins dispensed from 1.25 to 4.5 mm

1.6 POWER SUPPLY

standbye mpty max load forced stop
MOTOR 24Vdc ± 10%0 mA 80 mA 500 mA (transient) 500 mA
LOGIC 12Vdc ± 10%8 0 mA 80 mA 80 mA -

standby: X5 stopped but with power on
empty: normal operation
max load: operation with coin hopper full
forced stop:r efers to value of current absorbed by motor over which it is jammed, and the anti-jam procedure begins.

4 rev. 7-10-02-16

2I NSTALLATION

DO NOT SUPPLY X5 WITH POWER UNTIL ASSEMBLY AND DUE INSPECTION ARE COMPLETED

-A ffix the X5's slide to the machine.
- Check that it is properly plugged in if using 12 pin standard connector.
- Hook up the flat or 12 pin connector, following the instructions for each single pin as shown in paragraph 4.1, using

a suitable cable to support currents and maximum voltages.
-I nsert X5 onto the slide until it is totally inserted.
-T urn on electric power.

3E LECTRICAL INFORMATION

3.1 GENERAL DESCRIPTION

The operating modes of X5 are guided by a microprocessor:

ccTalk/AES protocol
parallel protocol
multi coin protocol
coin counter and divider

3.2 POWER SUPPLY

X5 is equipped with a 24 v continuous feed motor.

3.3 OPERATING MODES

X5-cc-Talk/AES MOD.
Functions with ccTALK/AES protocol.

3.4 OPTICAL SENSORS

There is a pair of optical sensors to determine the coins paid (including coins with a central hole) and a pair of inductive
sensors for the multi-coin models.

X5-ccTalk/AES MOD.
By means of the data line, ccTalk/AES protocol monitors all the sensors' functions.

3.5 LED INDICATORS

X5-ccTalk MOD.
This has just one flashing green LED:
rapid flashing indicates that the X5 is distributing one coin per flash
flashes with longer intervals indicates that the X5 is in on
led constantly on means X5 is in error: this can include photocell error or corrupt data in EEProm or insufficient power
supply.

3.6 COIN LEVEL PLATES

Inside X5 there are brass plates to determine the level of coins.

X5-cc-Talk/AES MOD.
Plate signals are internally operated by the ccTalk/AES protocolI.

rev. 7-10-02-16 5

4- ELECTRICAL SPECIFICATIONS

N.B. TO CONNECT THE X5 USE A 22AWG CABLE.

4.1 X5-cc-Talk/AES MOD. CONNECTOR

12 Pin connector (12V ccTalk, 24V ccTalk versions)

Pin 1 and Pin 9 power supply
Pin 4, Pin 8 and Pin 12 X5 address (as described in paragraph 4.2)
Pin 5 data line

The remaining Pins are not connected.

Optional 10-Pin connector mounted on optional MH455a board (versions 12V ccTalk, 24V ccTalk)

Pin 1 data line
Pin 4 and Pin 8 GND
Pin 7 and Pin 10 +24

The remaining Pins are not connected.

Pin 1- Gnd
Pin 2- n.c.
Pin 3- n.c.
Pin 4- Add. select 1
Pin 5- Data ccTalk
Pin 6- n.c.
Pin 7- n.c.
Pin 8- Add. select 2
Pin 9- +24V
Pin 10 - n.c.
Pin 11 - n.c.
Pin 12 - Add. select 3

Pin 1- Data ccTalk
Pin 2- n.c.
Pin 3- n.c.
Pin 4- Gnd
Pin 5- n.c.
Pin 6- n.c.
Pin 7- +24V
Pin 8- Gnd
Pin 9- n.c.
Pin 10 - +24V

6 rev. 7-10-02-16

Flat 10 Pin Connector (12V ccTalk, 24V ccTalk versions)

Pin 1 data line
Pin 4 and Pin 8 GND
Pin 7 and Pin 10 +24

The remaining Pins are not connected.

USB Connector 24V ccTalk version)

Separate power supply 24VDC - 12VDC (optional)
on connector "mini-fit" 2 poles.

Pin 1- Data ccTalk
Pin 2- n.c.
Pin 3- n.c.
Pin 4- Gnd
Pin 5- n.c.
Pin 6- n.c.
Pin 7- +24V
Pin 8- Gnd
Pin 9- n.c.
Pin 10 - +24V

The serial address of the hopper can be set using the Dip-Switch group.
The address changes depending on the combination of Dip-Switch, following the table:

Dip-Switch 1

Dip-Switch 2 Dip-Switch 3 N°

 1 3
 X 2 4
 X 3 5
 X X 4 6

X 5 7
X X 6 8
X X 7 9
X X X 8 10

ON

1 2 3

hopper
serial

 address

rev. 7-10-02-16 7

Header 254 “Simple poll”
Sent byte: none
Received byte: none
The hopper replies ACK if the command is identified or the address is correct

Header 253 “Address poll”
Sent byte: none
Received byte: only 1 byte (non-standard format) alike the using address and sent with a delay of 4*address mS.

Header 246 “Request manufacturer ID”
Sent byte: none
Received byte: String that indicates the builder. In this case “MicroHard.Srl.”

Header 245 “Request equipment category ID”
Sent byte: none
Received byte: String that indicates the kind of peripheral device. In this case “Coin Inject System”

Header 244 “Request product code”
Sent byte: none
Received byte: string that indicates the kind of product code. In this case “X5 DPO”

Header 242 “Request serial number”
Sent byte: none
Received byte: 3 byte [byte1],[byte2],[byte3] that indicates the serial number of the peripheral device. The firs byte is always LSB so
the serial number is [byte1]+256*[byte2]+65536*[byte3]

Header 241 “Request software revision”
Sent byte: none
Received byte: string with soft and hardware versions. Ex. “1.0 1.0” indicates software rev 1.0 and hardware rev 1.0

Header 217 “Request Payout Hi-Lo status”
Sent byte: none
Received byte: 1 byte that indicate the status and the presence of sensors of minimum and maximum
Bit0=1 Coins do NOT overtake the minimum sensor (if=0 they overtake)
Bit1=1 Coins do NOT overtake the maximum sensor (if=0 they overtake)
Bit2=1 Minimum sensor present (if=0 absent)
Bit3=1 Maximum sensor present (if= absent)

Header 236 “Read Opto States”
Sent byte: none
Received byte: 1 status Byte of optical sensors
Where 1 bit=0 indicates free way
Bit 0: M1
Bit 1: M2
Bit 2: M3 return into hopper
Bit 3: LB5 right storage position
Bit 4: LB4 left storage position
Bit 5: LB2 supply exit coin
Bit 6: LB3 coin recover
Bit 7: NU

Header 231 “Modify inhibit mask”
Sent byte: 2 byte. Each bit of 2 byte qualifies or disables the correspondent channel. Bit 0 of the first byte controls the channel 1,
bit7 of the second byte controls the channel 16
Received byte: None
The hopper replies with ACK
At the turn on and at the reset moment all the channels are active.
Pay very attention: if some supplied coins get disabled some amount could result impossible (it will happen a timeout in the pay-
ment)

Header 230 “Request inhibit mask”
Sent byte: None
Received byte: 2. The meaning is the same for the 2 2 byte sent with command 231.

Header 197 “Calculate ROM checksum”
Sent byte: none
Received byte: 3 byte [byte1],[byte2],[byte3] that indicate the checksum of the peripheral device. The firs byte is always LSB so the
checksum is [byte1]+256*[byte2]+65536*[byte3]

8 rev. 7-10-02-16

Header 169 “Request address mode”
Sent byte: none
Received byte: 1 with value =32
Value 32 indicates that the address of the peripheral device is set through deep-sw.

Header 164 “Enable Hopper”
Sent byte: 1 byte. If byte=165 the hopper is qualified for payments.
Received byte: None (the hopper replies with ACK)

Header 163 “Test Hopper”
Sent byte: none
Received byte: 2 byte that indicate the hopper status
 Byte 1 (WARNING: the hopper is anyway on duty)
 Bit0=1 Stopped hopper for current and restarted after release.
 Bit1=1 Timeout during supply (lack of coins or blocked engine)
 Bit2=1 Engine has made a release operation during the last supply
 Bit3=1 Set bit=1 at PowerOn and reset at firs valid command
 Bit4=1 Hopper disabled (disable with command 165)
 Bit5=1 Hopper stopped from command 132 (“Emergency stop value”)
 Bit6= 1 Hopper in duty / bit=0 hopper in IDLE (waiting for commands)
 Bit7= 1 Problem during coin recovery. Coin not correctly recovered. Bits reset (except bit 3 and 6) at each new qualification (com 	
mand 164) or at reset (command 1)
 Byte 2 (ERROR: if only one bit=1 hopper is blocked in “OUT OF ORDER”)
 Bit0=1 Inductive sensors faulty coins
 Bit1=1 Data Checksum wrong coins
 Bit2=1 Faulty Hall sensor
 Bit3=1 Blocked Hopper for blocked photocells LB2,LB3, M1,M2,M3.
 Bit4=1 Blocked Hopper for current limit overtaken after three attempts.
 Bit5=1 Blocked Hopper for polling-timeout during “purge hopper”
 Bit6,7= NU
The error bit get reset (and the hopper become active again) if the condition of the error do not exist anymore. Only the bit
5,6 get reset at “power on” (serious error that require an operator).

Header 134 “Dispense hopper value”
After the qualification of the hopper send only the parameter for the count.
If we send as parameter 0, the counters will be reset and they restart from 0, if we send 1 the counters will be progressive.
Received byte: none. The hopper replies with ACK if correct command and previously qualified with command 164.
At each payment the hopper get qualified. To a request of payment without qualification the hopper replies with NAK.
During payment only the commands 132 and132 and 1 are allowed (the others get back to a NAK) If we send the reset
(header=1) instead of an “Emergency stop value” (header 132) the operation stops anyway but clearly the count of the
supplied coins will be reset.

Header 133 “Request hopper polling value”
Sent byte: none
Received byte: 6 byte.
The first byte [data1] is an “Event Counter” that is a counter increased for each paid coin (any coin buti t has to be paid not rejected).
When 0 is set at reset it starts again from 1 at overflow (0 at reset than cyclic from 1 and 255)
Byte 2 e 3 indicate the value in cent of the value amount that has to be supplied = =[data2]+256*[data3] that is always=0 given
that it does not have meaning on CCS
Byte 4 e 5 indicate the value in cent of the supplied amount value=[data4]+256*[data5]
Byte6 indicate the status of the hopper about the payment.
If=7-9 payment in progress (7-> stable engine 8-> forward engine 9->behind engine)
If=0 hopper in idle and last start of the engine has been for command 134
All the byte except “event counter” get reset at each new command 134.
At power off the counters get saved, the event counter instead start again from 0. At a command of reset instead they get
all reset.

rev. 7-10-02-16 9

Header 132 “Emergency stop value”
Sent byte: none
Received byte: 2 byte (the first is LSB) that indicate the value in cent of the paid amount until the stop, so it counts [data1]+256*[da-
ta2]
The hopper after this command get disabled.
Repeating the command, the value get always repeated and saved until reset, at turn of or at a new command of payment (header
134).
ATTENTION: the reply depending on the status of the route of the coins can be very delayed and consider a timeout of at
least 500mS

Header 131 “Request hopper coin value”
Sent byte: 1 byte that indicate the channel (1-16) corresponding to the coin whose code and value you would like to find out.
Received byte: 8 byte. The firs 6 indicate the standard coin code ccTalk for Example“EU200” for 2€. The last 2 byte (the first is LSB)
indicate the value in cent and counts [data7]+256*[data8]

Header 130 “Request indexed hopper dispense count”
Sent byte: 1 byte that indicates the channel (1-16) corresponding to the coin whose quantity of supplied pieces you would like to find
out.
Received byte: 2 byte (the first is LSB) that indicate the number of the coin supplied from that channel from the reset. The value is
[data1]+256*[data2]
The value of the first 8 counters (channels 1-8) is saved at the turn off while at the command reset they get reset.

Header 121 “Purge hopper”
The hopper get totally empty. Also non-recognize coins get supplied.
This is a service command that must be execute together with an operator because it can be potentially dangerous. For reason of
security a precise method has to be used otherwise the command do not execute. Moreover, during the emptying the command 133
must be executed in a polling time not larger than 1 second. If this command is not properly sent the hopper get blocked at first exit
coin after the timeout occurred. It has to be turned off and turned on again (reset hardware) in order to restart it.
Method:
1-	 Send a reset (command 1)
2-	 Request of serial number (command 242)
3-	 Qualify the hopper (command 164)
4-	 NOW WITHIN A SECOND THE FOLLOWING COMMAND HAS TO BE EXECUTED OTHERWISE THE COMMAND 	
	 WILL NOT BE EXECUTED
5-	 Send command 121 with the correct serial numbers as for command 134 (first method). The hopper replies with ACK.
6-	 SEND IN POLLING UNTIL COINS TIMEOUT AND FINISH COMMAND 133.
From the valued of byte 6 you can figure out if the emptying is finish. If all the coins get (byte2_3 del command 133=0) the value can
be counted from byte 3_4 of command 133
DURING THE EMPTYING ONLY THE COMMANDS 133 AND 132 AND 1 ARE ALLOWED (the others will be back to a NAK). If
we send a reset (header=1) instead of an “Emergency stop value”(header 132) the operation stops but clearly the counters
of the supplied coins will be reset.

Header 4 “Request Comms Revision”
Sent byte: none
Received byte: 3 byte [1],[4],[3]

Header 1 “Reset device”
Sent byte: none
Received byte: none
The hopper replies with ACK after the execution of a soft reset.

10 rev. 7-10-02-16

The serial address of the hopper can be set using the Dip-Switch group.
The address changes depending on the combination of Dip-Switch, following the table:

-	 Command 134 “Dispense hopper value” is used for counting coins. Send any value of payment and the count 	
	 does not stop until you send a “132-Emergency stop value” or until a “timeout lack of coins” intervenes.
-	 In order to count the collected coins use a polling command “133-Request hopper polling value” during the 	
	 count or after that it is finished.
-	 At the end of the count in order to know the denomination of the collected coins use the “130-Request indexed 	
	 hopper dispense count”. (Attention: the count of the denominations is progressive so it is resettable only at the 	
	 moment of the starting or with a reset operation).
-	 CS does not have a “purge hopper” command . Command “134-Dispense hopper value” after a reset (when all 	
	 the coins are addressed on the sorter variance 0) is able to “empty” the entire hopper.
-	 It can be programmed until 16 coins in the 16 tubes but only 2 (mod ccs2) or 3 (mod ccs3) plus a variance can be 	
	 driven where the coins can be send. Programmed coins on the same separator channel will mix.

Recommended series for coins count:
1- hopper reset (command 1)
2- hopper qualification (command 164)
3-to set (command 210) sorter 1 for the channels that contains coins that have to go left 2 for channels with coins that
have to go rights and 3 (for ccs3) for coins on the left.
4-send command 134 with value 0 and if you would like to reset the counters of the coins or 1 if you would like to have a
develop of the counters.
5-supervise in polling with command 133 the supplied amount until the timeout of lack-of-coins intervenes (data byte 6=0)
or if you would like to stop send the command132.
6-use the command 130 on the programmed channels in order to find out the denomination of the collected coins.
ATTENTION: in case of interruption of power source the counters of the firs 8 coins will be saved together with the sup-
plied total.

Header 254 “Simple poll”
Sent byte: none
Received byte: none
The hopper replies ACK if the command is identified or the address is correct

Header 246 “Request manufacturer ID”
Sent byte: none
Received byte: String that indicates the builder. In this case “MicroHard.Srl.”

Header 245 “Request equipment category ID”
Sent byte: none
Received byte: String that indicates the kind of peripheral device. In this case “Coin Entry System”

Header 244 “Request product code”
Sent byte: none
Received byte: string that indicates the kind of product code. In this case “X5 CCS2”

Header 242 “Request serial number”
Sent byte: none
Received byte: 3 byte [byte1],[byte2],[byte3] that indicates the serial number of the peripheral device. The firs byte is always LSB so
the serial number is [byte1]+256*[byte2]+65536*[byte3]

Dip-Switch 1

Dip-Switch 2 Dip-Switch 3 N°

 1 3
 X 2 4
 X 3 5
 X X 4 6

X 5 7
X X 6 8
X X 7 9
X X X 8 10

ON

1 2 3

hopper
serial

 address

rev. 7-10-02-16 11

Header 241 “Request software revision”
Sent byte: none
Received byte: string with soft and hardware versions. Ex. “1.0 1.0” indicates software rev 1.0 and hardware rev 1.0

Header 236 “Read Opto States”
Sent byte: none
Received byte: 1 status Byte of optical sensors
Where 1 bit=0 indicates free way
Bit 0: M1
Bit 1: M2
Bit 2: M3 return into hopper
Bit 3: LB5 right storage position
Bit 4: LB4 left storage position
Bit 5: LB2 supply exit coin
Bit 6: LB3 coin recover
Bit 7: NU

Header 217 “Request Payout Hi-Lo status”
Sent byte: none
Received byte: 1 byte that indicate the status and the presence of sensors of minimum and maximum
Bit0=1 Coins do NOT overtake the minimum sensor (if=0 they overtake)
Bit1=1 Coins do NOT overtake the maximum sensor (if=0 they overtake)
Bit2=1 Minimum sensor present (if=0 absent)
Bit3=1 Maximum sensor present (if= absent)

Header 210 “Modify sorter path”
Sent byte: 2
Received byte: None (hopper replies with ACK)
Byte 1 indicates the channel 1-16 and byte 2 indicates the separation channel where the coin is sent. Channel 0 is the reject chan-
nel, channel 1 is the left one and channel 2 is the right one.
If for example the channel 1 is sent to left channel byte 1,1 must be sent.
At reset and at power on all the channels will be driven to the reject. It must be set as the coin changers.
If a channel is driven on the reject during the count (command 134) its value is not damaged. Therefore to programme a coin on the
reject channel is like inhibit it.

Header 209 “Request sorter path”
Sent byte 1, that indicates the channel where you would like to find out the separation channel.
Received byte: 1 that indicates the requested value.

Header 197 “Calculate ROM checksum”
Sent byte: none
Received byte: 3 byte [byte1],[byte2],[byte3] that indicate the checksum of the peripheral device. The firs byte is always LSB so the
checksum is [byte1]+256*[byte2]+65536*[byte3]

Header 169 “Request address mode”
Sent byte: none
Received byte: 1 with value =32
Value 32 indicates that the address of the peripheral device is set through deep-sw.

Header 164 “Enable Hopper”
Sent byte: 1 byte. If byte=165 the hopper is qualified for payments.
Received byte: None (the hopper replies with ACK)

Header 163 “Test Hopper”
Sent byte: none
Received byte: 2 byte that indicate the hopper status
Byte 1 (WARNING: the hopper is anyway on duty)
 	 Bit0=1 Stopped hopper for current and restarted after release.
 	 Bit1=1 Timeout during supply (lack of coins or blocked engine)
	 Bit2=1 Engine has made a release operation during the last supply
	 Bit3=1 Set bit=1 at PowerOn and reset at firs valid command
	 Bit4=1 Hopper disabled (disable with command 165)
	 Bit5=1 Hopper stopped from command 132 (“Emergency stop value”)
 	 Bit6= 1 Hopper in duty / bit=0 hopper in IDLE (waiting for commands)
 	 Bit7= 1 Problem during coin recovery. Coin not correctly recovered. Bits reset (except bit 3 and 6) at each new
	 qualification (command 164) or at reset (command 1)

12 rev. 7-10-02-16

Byte 2 (ERROR: if only one bit=1 hopper is blocked in “OUT OF ORDER”)
 Bit0=1 Inductive sensors faulty coins
 Bit1=1 Data Checksum wrong coins
 Bit2=1 Faulty Hall sensor
 Bit3=1 Blocked Hopper for blocked photocells LB2,LB3, M1,M2,M3.
 Bit4=1 Blocked Hopper for current limit overtaken after three attempts.
 Bit5=1 Blocked Hopper for polling-timeout during “purge hopper”
 Bit6,7= NU
The error bit get reset (and the hopper become active again) if the condition of the error do not exist anymore. Only the bit
5,6 get reset at “power on” (serious error that require an operator).

Header 134 “Dispense hopper value”
After the qualification of the hopper send only the parameter for the count.
If we send as parameter 0, the counters will be reset and they restart from 0, if we send 1 the counters will be progressive.
Received byte: none. The hopper replies with ACK if correct command and previously qualified with command 164.
At each payment the hopper get qualified. To a request of payment without qualification the hopper replies with NAK.
 During payment only the commands 132 and132 and 1 are allowed (the others get back to a NAK) If we send the reset
(header=1) instead of an “Emergency stop value” (header 132) the operation stops anyway but clearly the count of the
supplied coins will be reset.

Header 133 “Request hopper polling value”
Sent byte: none
Received byte: 6 byte.
The first byte [data1] is an “Event Counter” that is a counter increased for each paid coin (any coin buti t has to be paid not rejected).
When 0 is set at reset it starts again from 1 at overflow (0 at reset than cyclic from 1 and 255)
Byte 2 e 3 indicate the value in cent of the value amount that has to be supplied = =[data2]+256*[data3] that is always=0 given
that it does not have meaning on CCS
Byte 4 e 5 indicate the value in cent of the supplied amount value=[data4]+256*[data5]
Byte6 indicate the status of the hopper about the payment.
If=7-9 payment in progress (7-> stable engine 8-> forward engine 9->behind engine)
If=0 hopper in idle and last start of the engine has been for command 134
All the byte except “event counter” get reset at each new command 134.
At power off the counters get saved, the event counter instead start again from 0. At a command of reset instead they get
all reset.

Header 132 “Emergency stop value”
Sent byte: none
Received byte: 2 byte (the first is LSB) that indicate the value in cent of the paid amount until the stop, so it counts [data1]+256*[da-
ta2]
The hopper after this command get disabled.
Repeating the command, the value get always repeated and saved until reset, at turn of or at a new command of payment (header
134).
ATTENTION: the reply depending on the status of the route of the coins can be very delayed and consider a timeout of at
least 500mS

Header 131 “Request hopper coin value”
Sent byte: 1 byte that indicate the channel (1-16) corresponding to the coin whose code and value you would like to find out.
Received byte: 8 byte. The firs 6 indicate the standard coin code ccTalk for Example“EU200” for 2€. The last 2 byte (the first is LSB)
indicate the value in cent and counts [data7]+256*[data8]

Header 130 “Request indexed hopper dispense count”
Sent byte: 1 byte that indicates the channel (1-16) corresponding to the coin whose quantity of supplied pieces you would like to find
out.
Received byte: 2 byte (the first is LSB) that indicate the number of the coin supplied from that channel from the reset. The value is
[data1]+256*[data2]
The value of the first 8 counters (channels 1-8) is saved at the turn off while at the command reset they get reset.

Header 4 “Request Comms Revision”
Sent byte: none
Received byte: 3 byte [1],[4],[3]

Header 1 “Reset device”
Sent byte: none
Received byte: none
The hopper replies with ACK after the execution of a soft reset.

rev. 7-10-02-16 13

5 SPARE PARTS

Use exclusively original spare parts to replace any components.

Use of non-original and/or non conform parts (if not authorized exclusively by the assistance center in
writing) release the manufacturer from all liability.

To request spare parts, photocopy the page of the pertinent spare parts table and fill out the table
completely, indicating the table containing the part, its reference number on the drawing and the quantity
of parts requested, and your details.

Requests lacking the above data will not be taken into consideration.

Send the copy/ies by fax to the number +39 0547 81247

SPARE PARTS REQUEST FORM
Send copy by fax to the number +39 0547 81247

TABLE NUMBER QUANTITY TABLE NUMBER QUANTITY TABLE NUMBER QUANTITY

Company name

Address

City/Town

Tel.

Fax

Date of request

Stamp/Signature

CUSTOMER DATA

14 rev. 7-10-02-16

TAV. 1 - PAYOUT PART CINCH CONNECTOR

rev. 7-10-02-16 15

TAV. 2 - PAYOUT PART CONNECTOR CCTALK

16 rev. 7-10-02-16

TAV. 3 - STANDART VERSION

rev. 7-10-02-16 17

TAV. 4 - SIDE VERSION 1

18 rev. 7-10-02-16

TAV. 4a - SIDE VERSION 2

rev. 7-10-02-16 19

TAV. 5 - DYNAMIC PAY OUT

20 rev. 7-10-02-16

TAV.6 - COIN COUNTER AND SORTER

Page left intentionally blank for pagination purposes

Microhard s.r.l.
Via dei Platani. 7 - 47042 Cesenatico (FC)

TEL.: 0039-0547 75450 FAX: 0039-0547 81247
info@microhard.it
www.microhard.it

